Nauczyciel: Możesz Janku podać przyktad jakiegoś odejmowania.
Janek: Dwa odjqć pięć, proszę pani.
Nauczyciel: Źle, przecież nie można odejmować liczby większej od mniejszej.

3. Zasada poglądowości

> Zasada poglqdowości polega na takim opracowaniu materiału, przy którym wyobrażenia i pojęcia uczniów ksztattujq się na podstawie aktualnego lub dawniejszego postrzegania autentycznych przedmiotów i autentycznych zjawisk, lub co najmniej wiernych ich modeli.

Wprowadzając na przykład pojęcie prostopadłościanu, zaczynamy od pokazania bryt przypominających prostopadłościan (w kształcie prostopadłościanu). Nauczyciel powinien zdawać sobie sprawę, że nie może pokazać uczniom idealnego prostopadtościanu, że to matematyczne pojęcie. To rozróżnienie abstraktu i fizycznego modelu powinno być w świadomości nauczyciela, w świadomości ucznia na początku edukacji niekoniecznie. Kiedyś protestowano przeciw pisaniu w książkach To jest kot, domagano się zmiany na To jest rysunek kota. Ten puryzm jest niepotrzebny i czasami szkodliwy. Wracając do prostopadtościanu, istnieje precyzyjna definicja prostopadtościanu, ale na początku powinniśmy poprzestać na bardzo poglądowej definicji (np.: Prostopadtościan to bryta, która ma 6 prostokq̨tnych ścian.). Opieranie się na mowie, z zaniedbywaniem działania, podawanie uczniom gotowych sformutowań (nieraz wyodrębnionych specjalnym drukiem w podręcznikach), uczenie rozmaitych regut - oto najczęstsze wykroczenia przeciw zasadzie poglądowości. Szybka rezygnacja z poglądowości na rzecz formut abstrakcyjnych może prowadzić do utraty intuicji, na przykład zbyt szybkie wprowadzenie wzoru na pole prostokąta ($P=a \cdot b$) może prowadzić do ktopotów z rozwiązywaniem zadań, w których trzeba dobrze sobie uświadamiać, czym jest pole (dotyczy to np. zadań na wykładanie różnych pomieszczeń ptytkami w ksztatcie kwadratu lub prostokąta).

Czy zasada poglądowości oznacza rezygnację ze ścistości? Nie, oczywiście nie. Zauważmy jednak, że niektórych fragmentów matematyki nie da się na poziomie szkolnym nauczyć inaczej niż w sposób poglądowy. Oto przykład - wyprowadzenie wzoru na pole kota:

4. Zasada świadomego i aktywnego uczenia się

Zadaniem nauczyciela jest takie zaplanowanie procesu nauczania, aby uczeń uświadamiat sobie, jakie zadanie rozwiązuje, jakie twierdzenie jest dowodzone. Zadając pytania typu „Co trzeba udowodnić?", „Co jest założeniem, a co tezą?", sprawdzamy, czy uczeń rozumie, czym się zajmuje. Aktywność ucznia polega na jego własnej „matematycznej twórczości", a zadaniem nauczyciela jest wzbudzanie tej aktywności. Zasada ta ma oczywiste ograniczenie: aktywność ucznia, „matematyka dziecka", jest sterowana przez „matematykę nauczyciela". W dydaktyce matematyki pojawiają się niekiedy żądania całkowitej swobody ucznia (np. wedtug niektórych badaczy to uczeń powinien sam wymyślać swoje algorytmy wykonywania dziatań arytmetycznych na liczbach). Te pomysty nie mogą być realizowane na szeroką skalę. Nawoływania do stworzenia warunków do petnej aktywności uczniów chyba nie mają szans realizacji, ale warto wspomnieć o jednym ciekawym pomyśle - Genetisches Lernen (uczenie się genetyczne) kanadyjskiego pedagoga Alana Wittenberga. Pomyst ten opiera się na idei odkrywania pojęć i twierdzeń na drodze od ich naturalnych żródet. Trudno ten pomyst stosować w całej rozciągłości, bo czy możemy oczekiwać, że student sam odkryje pojęcie na przykład przestrzeni topologicznej. W swoisty sposób idee Wittenberga stosowat matematyk amerykański Moore8, który zabraniat swoim studentom korzystać z podręczników i prac innych matematyków. Kilku wychowanków Moore'a osiągnęło wybitne rezultaty w matematyce.

[^0]
[^0]: 8 Ciekawe informacje o metodzie Moore'a można znaleźć w artykule Petera Renza, The Moore method: what discovery learning is and how it works, Focus, v. 16, nr 6, s. 6, 8 (1999).

